...
首页> 外文期刊>Global and planetary change >Plume-induced dynamic instabilities near cratonic blocks: Implications for P-T-t paths and metallogeny
【24h】

Plume-induced dynamic instabilities near cratonic blocks: Implications for P-T-t paths and metallogeny

机译:Plume-induced dynamic instabilities near cratonic blocks: Implications for P-T-t paths and metallogeny

获取原文
获取原文并翻译 | 示例
           

摘要

Plume head-lithosphere interactions around cratonic blocks result in thermo-mechanical disturbances that lead to heating and burial phases of crustal rocks. We present results from numerical models of plume head-cratonic blocks interactions where a free upper surface condition and realistic rheologies are accounted for. These models include distinct cratonic blocks embedded within a continental lithosphere and separated by several hundreds of kilometers. Surface topography, thermal field and effective viscosity values are tracked for 20 Myr of interactions. The modeled dynamic interaction of a plume head around cratonic blocks results in two main types of instabilities, each of them resulting in a distinct P-T-t path. The "slab-like" instability, focused on cratonic edges when plume head is away from the craton center, shows a near-isothermal burial phase, while the "drip-like" instability occurring above plume head material results in a near-isobaric heating phase. Consequently, both clockwise and counterclockwise P-T-t paths can be expected around cra-tons, as actually observed around the Tanzanian craton and other cratonic areas. Metallogenic data from gemstone-bearing rocks in south-east Africa and data from ultrahigh temperature and ultrahigh pressure metamorphism are compatible with our model. It appears that vertical mantle dynamics around cratons may also explain thermobarometric signatures that are often attributed to horizontal tectonics.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号