首页> 外文期刊>Composite structures >Influence of steel yielding and resin toughness on debonding of wrapped composite joints
【24h】

Influence of steel yielding and resin toughness on debonding of wrapped composite joints

机译:Influence of steel yielding and resin toughness on debonding of wrapped composite joints

获取原文
获取原文并翻译 | 示例
           

摘要

The concept of an innovative bonded joining technology where welding is not required is presented as an alternative to traditional welded connection for steel circular hollow section (CHS). Wrapped composite joints have potential to greatly improve fatigue endurance when applied in multi-membered truss structures, e.g. offshore jackets for wind turbines. This paper focuses on characterization of influence of chemical bonding resistance, fracture toughness of resins, and steel yielding on debonding of wrapped composite joints. Uniaxial splice joints (A-joints) are made with GFRP composite material wrapped around steel sections, and tested under static tensile loading conditions until failure. Different chemical bonding properties by application of bonding primer, different types of polymer resins and steel grade are used during the wrapping procedure. Debonding on the bonded interface are identified by surface strain measurements through 3D digital image correlation (DIC) technique. Testing results indicate that steel yielding limits full utilization of the resistance of the bonded interface. Wrapped composite A-joints with high-strength steel exhibits 75% larger ultimate load where yielding is prevented. Larger fracture toughness of toughened vinyl-ester resin contributes to 30% larger displacement of the joints at failure compared to regular vinyl-ester and polyester resins.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号