...
首页> 外文期刊>IEEE Journal of Solid-State Circuits >A 1-MS/s to 1-GS/s Ringamp-Based Pipelined ADC With Fully Dynamic Reference Regulation and Stochastic Scope-on-Chip Background Monitoring in 16 nm
【24h】

A 1-MS/s to 1-GS/s Ringamp-Based Pipelined ADC With Fully Dynamic Reference Regulation and Stochastic Scope-on-Chip Background Monitoring in 16 nm

机译:A 1-MS/s to 1-GS/s Ringamp-Based Pipelined ADC With Fully Dynamic Reference Regulation and Stochastic Scope-on-Chip Background Monitoring in 16 nm

获取原文
获取原文并翻译 | 示例
           

摘要

This article presents a fully dynamic ringamp-based pipelined ADC with integrated reference buffer that operates from 1-MS/s to 1-GS/s and maintains a Walden Figure-of-Merit (FoM) of 14 fJ/conversion-step across this range. A “split-reference” regulation technique is introduced, which provides multiple buffered replicas with varying accuracies and output impedances to the core ADC circuitry, relaxing overall buffer design requirements and improving efficiency. The regulator blocks are implemented with fully dynamic discrete-time loops. Furthermore, a technique for background reconstruction of residue amplifier settling behavior is also described. The “scope-on-chip” captures high-resolution transient waveforms using a 1-bit stochastic ADC. It is shown how these waveform data can be used for optimization of ringamp biasing and PVT tracking. The ADC is fabricated in a 16-nm CMOS technology and at 1 GS/s with a Nyquist input achieves 59.5-dB SNDR, 75.9-dB SFDR, and 10.9-mW total power consumption with only 8% consumed by the reference regulation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号