首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Research on Meshing Characteristics of Shearer Walking Wheel Based on Rigid-Flexible Coupling
【24h】

Research on Meshing Characteristics of Shearer Walking Wheel Based on Rigid-Flexible Coupling

机译:Research on Meshing Characteristics of Shearer Walking Wheel Based on Rigid-Flexible Coupling

获取原文
获取原文并翻译 | 示例
           

摘要

Frequent failure of the walking wheel seriously restricts the performance of the whole shearer. To reduce the failure rate and improve the working performance of the walking wheel, the meshing characteristics of the tooth pin are researched. The dynamic state equations of the walking wheel and the contact force model of tooth pin meshing are established. The rigid-flexible coupling simulation model of tooth pin meshing is built. The load distribution characteristics of the walking wheel are analyzed, as well as the effects of impact load amplitude and duration. Results show that the curve of the longitudinal load distribution coefficient (K-beta) of the contact area is W-shaped, with a maximum of 1.325 at the moment of a single tooth contact. The end of the transition curve is the most serious position of the longitudinal load imbalance at the tooth root. In addition, on the impact moment,K(beta)tends to decrease and maximum stress obviously increases with the increase in impact load under 40%; the material at the contact position will fail under an extra 39% instantaneous impact load. Furthermore, with the impact load of 30%, the influence of load impact duration under 0.5 s on the meshing characteristics of the walking wheel is relatively faint. The results provide some guidance for the design optimization of the walking wheel and provide a reference for improving the reliability of the shearer.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号