首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Classification on Digital Pathological Images of Breast Cancer Based on Deep Features of Different Levels
【24h】

Classification on Digital Pathological Images of Breast Cancer Based on Deep Features of Different Levels

机译:Classification on Digital Pathological Images of Breast Cancer Based on Deep Features of Different Levels

获取原文
获取原文并翻译 | 示例
           

摘要

Breast cancer is one of the primary causes of cancer death in the world and has a great impact on women's health. Generally, the majority of classification methods rely on the high-level feature. However, different levels of features may not be positively correlated for the final results of classification. Inspired by the recent widespread use of deep learning, this study proposes a novel method for classifying benign cancer and malignant breast cancer based on deep features. First, we design Sliding + Random and Sliding + Class Balance Random window slicing strategies for data preprocessing. The two strategies enhance the generalization of model and improve classification performance on minority classes. Second, feature extraction is based on the AlexNet model. We also discuss the influence of intermediate- and high-level features on classification results. Third, different levels of features are input into different machine-learning models for classification, and then, the best combination is chosen. The experimental results show that the data preprocessing of the Sliding + Class Balance Random window slicing strategy produces decent effectiveness on the BreaKHis dataset. The classification accuracy ranges from 83.57% to 88.69% at different magnifications. On this basis, combining intermediate- and high-level features with SVM has the best classification effect. The classification accuracy ranges from 85.30% to 88.76% at different magnifications. Compared with the latest results of F. A. Spanhol's team who provide BreaKHis data, the presented method shows better classification performance on image-level accuracy. We believe that the proposed method has promising good practical value and research significance.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号