首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Continuum Damage Mechanics Approach for Modeling Cumulative-Damage Model
【24h】

Continuum Damage Mechanics Approach for Modeling Cumulative-Damage Model

机译:Continuum Damage Mechanics Approach for Modeling Cumulative-Damage Model

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we propose a novel cumulative-damage model based on continuum damage mechanics under situations where the mechanical components are subjected to variable loading. The equivalent completely reversed stress amplitude accounting for the effect of mean stress, stress gradients, loading history, and additional hardening behavior related to nonproportional loading paths on high-cycle fatigue under variable loading is elaborated. The effect of mean stress, stress gradients, loading history, and additional hardening behavior related to nonproportional loading paths is considered by averaging the superior limit of the intrinsic damage dissipation work in the critical domain. We developed a novel cumulative-damage model by introducing the equivalent completely reversed stress amplitude into the damage-evolution model. For better comparison, existing cumulative-damage models, including the Palmgren-Miner law, corrected Palmgren-Miner law, Morrow's plastic work interaction rule, and Wang's rule, were employed to predict the fatigue life under variable loading. The proposed model performed better, considering the error scatter band obtained by plotting the predicted and experimental fatigue life on the same coordinate system. The model precisely predicts fatigue life under variable loading and easily identifies its material constants.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号