首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Buckling Stability Analysis for Piles in the Slope Foundation Based on Cusp Catastrophe Theory
【24h】

Buckling Stability Analysis for Piles in the Slope Foundation Based on Cusp Catastrophe Theory

机译:Buckling Stability Analysis for Piles in the Slope Foundation Based on Cusp Catastrophe Theory

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this paper is to analyze the buckling stability problem for piles in the slope foundation based on cusp catastrophe theory. Formulation of critical buckling load of piles in the slope foundation is obtained. The influential factors of slope angle, distribution of landslide thrust behind the pile, pile-embedded ratio, pile constraints, pile-side friction, pile-side soil resistance, and pile socketed ratio upon buckling stability characteristic for piles in the slope foundation are examined. The results reveal that when pile diameter remains unchanged, critical buckling load increases with the increase of pile length when pile-embedded ratio reaches 60%. When pile length remains unchanged, critical buckling load increases with the increase of pile diameter. Critical buckling load with the assumption of nonlinear horizontal elastic resistance of pile-side soil in the paper is more close to the value based on horizontal elastic resistance of pile-side soil suggested in the code. When slope angle increases, decreased extent of buckling critical load for piles 30-60 m in length is more obvious than the piles which are 10-30 m in length. Strengthening of pile constraints and increase of pile-embedded ratio and socketed ratio are helpful to pile critical buckling load increase. The influential factors of pile-side friction and landslide thrust behind the pile upon pile critical buckling load are tiny and can be neglected.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号