...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Nonlinear field-split preconditioners for solving monolithic phase-field models of brittle fracture
【24h】

Nonlinear field-split preconditioners for solving monolithic phase-field models of brittle fracture

机译:Nonlinear field-split preconditioners for solving monolithic phase-field models of brittle fracture

获取原文
获取原文并翻译 | 示例
           

摘要

One of the state-of-the-art strategies for predicting crack propagation, nucleation, and interaction is the phase-field approach. Despite its reliability and robustness, the phase-field approach suffers from burdensome computational cost, caused by the non -convexity of the underlying energy functional and a large number of unknowns required to resolve the damage gradients. In this work, we propose to solve such nonlinear systems in a monolithic manner using the Schwarz preconditioned inexact Newton (SPIN) method. The proposed SPIN method leverages the field split approach and minimizes the energy functional separately with respect to displacement and the phase-field, in an additive and multiplicative manner. In contrast to the standard alternate minimization, the result of this decoupled minimization process is used to construct a preconditioner for a coupled linear system, arising at each Newton's iteration. The overall performance and the convergence properties of the proposed additive and multiplicative SPIN methods are investigated by means of several numerical examples. A comparison with widely-used alternate minimization is also performed showing a significant reduction in terms of execution time. Moreover, we also demonstrate that this reduction grows even further with increasing problem size.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号