首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Research on the Models of Coupling Dynamics and Damage Classification for Vehicle-Engine Vibration
【24h】

Research on the Models of Coupling Dynamics and Damage Classification for Vehicle-Engine Vibration

机译:Research on the Models of Coupling Dynamics and Damage Classification for Vehicle-Engine Vibration

获取原文
获取原文并翻译 | 示例
           

摘要

Many researchers have designed the dynamic models to study the vehicle-engine vibration. However, the existing mechanical models are relatively simple, and the analysis of engine vibration damage is discussed rarely. In this paper, we proposed the models of coupling dynamics and damage classification of vehicle-engine vibration. The key advantages of these proposed models are (1) the finite elements method is adopted for the rotor and casing system, and the complex structure with multirotor and multicasing is modeled by defining support system and linking methods; (2) the hybrid numerical integral method is used to obtain the inherent frequency of the nonlinear dynamic system; and (3) the algorithms based on backpropagation (BP) neural network and radial basis function (RBF) neural network are chosen to construct the damage classification model of rotors. Experimental results based on the engine rotor tester prove that the proposed models are not only more robust than the existing works but also show that the classification algorithms can support engine damage analysis effectively.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号