首页> 外文期刊>Composite structures >A finite element model for 3D printed recycled parts from end-of-life wind turbine blades
【24h】

A finite element model for 3D printed recycled parts from end-of-life wind turbine blades

机译:A finite element model for 3D printed recycled parts from end-of-life wind turbine blades

获取原文
获取原文并翻译 | 示例
           

摘要

Wind turbines are important for clean electric energy, but the increasing number of end-of-life wind turbine blades has become a hazardous waste problem worldwide. A novel recycling approach based on mechanical grinding and combined with 3D printing techniques is a promising solution that will reduce waste at a low cost while retaining the excellent mechanical properties of recycled fabricated samples. Considering the material structure complexity of 3D printed samples, the Representative Volume Element (RVE) is a promising simulation model. This paper proposes a Modified Random Sequential Adsorption (MRSA) algorithm for the efficient generation of RVEs with hybrid and arbitrary-geometry reinforcements. Compared with the classical RSA algorithm, MRSA is advantageous in fiber intersection computational cost. The error between FEA and experiments is lower than results obtained from Mori-Tanaka and Halpin-Tsai. The effects of fiber content, fiber aspect ratio, fiber orientation and local fiber density are discussed. The model will be helpful for accurately predicting properties of 3D printing materials that use recycled wind turbine waste.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号