首页> 外文期刊>journal of ocean engineering and marine energy >Extension of a coupled mooring-viscous flow solver to account for mooring-joint-multibody interaction in waves
【24h】

Extension of a coupled mooring-viscous flow solver to account for mooring-joint-multibody interaction in waves

机译:Extension of a coupled mooring-viscous flow solver to account for mooring-joint-multibody interaction in waves

获取原文
获取原文并翻译 | 示例
           

摘要

To account for nonlinear wave-structure interaction, mooring dynamics and the associated viscous flow effects, a coupled mooring-viscous flow solver was formerly developed and validated (Jiang et al. in Mar Struct 72:783, 2020a, Validation of a dynamic mooring model coupled with a RANS solver). This paper presents an extension of the coupled mooring-viscous flow solver to solve mooring dynamics interacting with an articulated multibody offshore system. The presently extended solver is verified by comparing the predicted motions of and loads on a moored floating box to those obtained from the formerly validated solver, which was aimed for solving mooring dynamics interacting with a single floating body. The almost identical results obtained from both solvers verify the presently developed multi-module coupling technique for solving the mooring dynamics and articulated multibody dynamics in a coupled manner. Apart from the code comparison and verification, the numerical predictions are also validated against experimental tank measurements both for a single body and an articulated multibody. The good agreements between the numerical predictions and the experimental measurements validate the presently extended solver, where wave-induced body motions together with loads acting on mooring lines and joint connections were examined. Developed as an open-source tool, the extended solver shows a potential of the coupled methodology for analyzing an articulated multibody offshore system, moored with various mooring configurations in extreme sea states, which goes beyond the state of the art.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号