首页> 外文期刊>Reliability engineering & system safety >Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts
【24h】

Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts

机译:Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts

获取原文
获取原文并翻译 | 示例
           

摘要

Mission abort policies have been investigated for both single-attempt and multi-attempt missions in the last decade. The existing models typically assumed a single task performed during the mission. However, a mission in practice may consist of multiple tasks (e.g., a surveillance mission consisting of multiple tasks with different routes). This paper advances the state of the art on aborting policies (AP) by modeling systems performing a mission with multiple tasks. Each task may be executed under a different environment and have a distinct AP based on the number of shocks experienced and on an operation time threshold. Each task may be attempted multiple times and the total number of attempts is limited by the available system resource. The operating en-vironments during the operation phase and the rescue phase of each task may also differ. The task-dependent AP and the execution sequence of multiple tasks are jointly modeled and optimized to minimize the expected mission losses (EML). The solution methodology encompasses a new recursive EML evaluation algorithm and the genetic algorithm-based optimization method. The proposed AP model and solution method are demonstrated using a case study of an unmanned aerial vehicle performing a five-task surveillance mission.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号