首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Mathematical Model of Air Pocket Evolution during Water Filling a Long-Slope Pipeline and Its Application to Air Removal Prediction
【24h】

Mathematical Model of Air Pocket Evolution during Water Filling a Long-Slope Pipeline and Its Application to Air Removal Prediction

机译:Mathematical Model of Air Pocket Evolution during Water Filling a Long-Slope Pipeline and Its Application to Air Removal Prediction

获取原文
获取原文并翻译 | 示例
           

摘要

During water filling a long-slope pipeline, air pocket is very likely to be entrapped at peak point. In order to track air movement and predict air removal conditions, a mathematical model of air pocket evolution, including its formation, compression, and entrainment, is proposed in this paper. The simulation results were compared with the engineering field data and the two are basically consistent. Furthermore, the two most important factors which play a great role in the removal of air pocket, i.e., the terrain category and the inlet flow rate, are analyzed in detail. It is concluded that the removal conditions reach three outcomes: air pocket compressed and partly removed, compressed and completely removed, and compressed without any removal. In this paper, the terrain which leads to the last outcome is called the "Dangerous Terrain." And for the "Dangerous Terrain," it is of great importance that the inlet flow rate should be strictly confined within a certain level. While for the other two categories of terrains, an increased flow rate is in any respect beneficial to the removal of air pocket.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号