...
首页> 外文期刊>journal of cellular physiology >Multiple pathways for ligand internalization in rat hepatocytes II: Effect of hyperosmolarity and contribution of fluid‐phase endocytosis
【24h】

Multiple pathways for ligand internalization in rat hepatocytes II: Effect of hyperosmolarity and contribution of fluid‐phase endocytosis

机译:Multiple pathways for ligand internalization in rat hepatocytes II: Effect of hyperosmolarity and contribution of fluid‐phase endocytosis

获取原文
           

摘要

AbstractIn a companion report (Moss and Ward: J. Cell. Physiol. 149:313–318, 1991) evidence was presented for multiple pathways for insulin internalization based on differences between the internalization of insulin and that of two other ligands, asialofetuin (Afet) and epidermal growth factor (EGF), in the presence of several perturbations of endocytosis. In the present study we have explored the characteristics of three internalization pathways and the contribution of each to overall insulin uptake. Freshly isolated hepatocytes were incubated with radiolabeled ligands in the presence of hyperosmolar sucrose, treatment that is thought to inhibit the coated pit pathway of endocytosis. Insulin internalization was decreased approximately 39%, but much greater decreases were observed with Afet (86%) and EGF (62%). Competition between uptake of radiolabeled and unlabeled insulin was observed in hyperosmolar‐treated cells, suggestive of endocytosis by a receptor‐mediated noncoated‐pit pathway. Uptake of radiolabeled insulin that persisted in the presence of hyperosmolarity and high concentrations of unlabeled insulin suggested a third uptake pathway: fluid‐phase endocytosis. A rate of fluid‐phase endocytosis of 7.2 μL/hr/106cells was determined from the uptake of the fluid‐phase marker lucifer yellow. At high insulin concentrations (≥ 250 ng/ml), fluid‐phase endocytosis appears to be the predominant pathway for insulin uptake, but at lower insulin concentrations (physiological) the coated pit and noncoated pit pathways are the primary routes for insul

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号