首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Path Planning for Autonomous Articulated Vehicle Based on Improved Goal-Directed Rapid-Exploring Random Tree
【24h】

Path Planning for Autonomous Articulated Vehicle Based on Improved Goal-Directed Rapid-Exploring Random Tree

机译:Path Planning for Autonomous Articulated Vehicle Based on Improved Goal-Directed Rapid-Exploring Random Tree

获取原文
获取原文并翻译 | 示例
           

摘要

The special steering characteristics and task complexity of autonomous articulated vehicle (AAV) make it often require multiple forward and backward movements during autonomous driving. In this paper, we present a simple yet effective method, named head correction with fixed wheel position (HC-FWP), for the demand of multiple forward and backward movements. The goal-directed rapid-exploring random tree (GDRRT) algorithm is first used to search for a feasible path in the obstacle map, and then, the farthest node search (FNS) algorithm is applied to obtain a series of key nodes, on which HC-FWP is used to correct AAV heading angles. Simulation experiments with Dynapac CC6200 articulated road roller parameters show that the proposed improved goal-directed rapid-exploring random tree (IGDRRT), consisting of GDRRT, FNS, and HC-FWP, can search a feasible path on maps that require the AAV to move back and forth.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号