首页> 外文期刊>The Journal of Chemical Physics >The many-body expansion approach to ab initio calculation of electric field gradients in molecular crystals
【24h】

The many-body expansion approach to ab initio calculation of electric field gradients in molecular crystals

机译:The many-body expansion approach to ab initio calculation of electric field gradients in molecular crystals

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate calculation of electric field gradients (EFGs) in molecular crystals, despite big advances in ab initio techniques, is still a challenge. Here, we present a new approach to calculate the EFGs in molecular crystals by employing the many-body expansion (MBE) technique with electrostatic embedding. This allows for (i) a reduction in the computational cost or an alternative increase in the level of theory (we use the MP2/6-311++G) and (ii) the ability to monitor EFG convergence by progressively adding more surrounding molecules and/or adding higher many-body interactions. We focus on the N-14 EFG and study four (model) compounds in more detail: solid nitrogen, ethylamine, methylamine, and ammonia. Solid nitrogen is rather insensitive to neighbors; for ethylamine and methylamine, the 3-body interactions are found sufficient for a converged EFG, whereas for ammonia, even the inclusion of 5-body interactions is insufficient although convergence is anticipated. We then validate our technique by comparing the experimental and ab initio(14)N EFGs for 116 organic compounds utilizing their known crystal structures and published EFG. Overall, we find a very good agreement, with a small EFG rms error, which is probably due to other sources, rather than the MBE approximation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号