首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Productivity Evaluation of Vertical Wells Incorporating Fracture Closure and Reservoir Pressure Drop in Fractured Reservoirs
【24h】

Productivity Evaluation of Vertical Wells Incorporating Fracture Closure and Reservoir Pressure Drop in Fractured Reservoirs

机译:Productivity Evaluation of Vertical Wells Incorporating Fracture Closure and Reservoir Pressure Drop in Fractured Reservoirs

获取原文
获取原文并翻译 | 示例
           

摘要

In most oilfields, many wells produce in pseudo-steady-state period for a long time. Because of large reservoir pressure drop in this period, fractured reservoirs always show strong stress sensitivity and fracture closure is likely to occur near wellbores. The primary goal of this study is to evaluate productivity of vertical wells incorporating fracture closure and reservoir pressure drop. Firstly, a new composite model was developed to deal with stress sensitivity and fracture closure existed in fractured reservoirs. Secondly, considering reservoir saturation condition, new pseudo-steady productivity equations for vertical wells were derived by using the proposed composite system. Thirdly, related inflow performance characteristics and influence of some factors on them were also discussed in detail. Results show that fracture closure has a great effect on vertical well inflow performance and fracture closure radius is negatively correlated with well productivity. In this composite model, the effects of stress sensitivity of the inner and outer zone on well productivity are rather different. The inner zone's stress sensitivity affects well productivity significantly, but the outer zone's stress sensitivity just has a weak effect on the productivity. Strong stress sensitivity in the inner zone leads to low well productivity, and both inflow performance and productivity index curves bend closer to the bottom-hole pressure axis with stress sensitivity intensifying. Meanwhile, both maximum productivity and optimal bottom-hole pressure can be achieved from inflow performance curves. In addition, reservoir pressure is positively correlated with vertical well productivity. These new productivity equations and inflow performance curves can directly provide quantitative reference for optimizing production system in fractured reservoirs.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号