首页> 外文期刊>journal of ocean engineering and marine energy >MNLS simulations of surface wave groups with directional spreading in deep and finite depth waters
【24h】

MNLS simulations of surface wave groups with directional spreading in deep and finite depth waters

机译:MNLS simulations of surface wave groups with directional spreading in deep and finite depth waters

获取原文
获取原文并翻译 | 示例
           

摘要

We simulate focusing surface gravity wave groups with directional spreading using the modified nonlinear Schrodinger (MNLS) equation and compare the results with a fully-nonlinear potential flow code, OceanWave3D. We alter the direction and characteristic wavenumber of the MNLS carrier wave, to assess the impact on the simulation results. Both a truncated (fifth-order) and exact version of the linear dispersion operator are used for the MNLS equation. The wave groups are based on the theory of quasi-determinism and a narrow-banded Gaussian spectrum. We find that the truncated and exact dispersion operators both perform well if: (1) the direction of the carrier wave aligns with the direction of wave group propagation; (2) the characteristic wavenumber of the carrier wave coincides with the initial spectral peak. However, the MNLS simulations based on the exact linear dispersion operator perform significantly better if the direction of the carrier wave does not align with the wave group direction or if the characteristic wavenumber does not coincide with the initial spectral peak. We also perform finite-depth simulations with the MNLS equation for dimensionless depths (k(p)d) between 1.36 and 5.59, incorporating depth into the boundary conditions as well as the dispersion operator, and compare the results with those of fully-nonlinear potential flow code to assess the finite-depth limitations of the MNLS.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号