首页> 外文期刊>Journal of thermal analysis and calorimetry >On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy
【24h】

On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy

机译:On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy

获取原文
获取原文并翻译 | 示例
           

摘要

Solar radiative energy represents an important source of renewable energy. Of late, hybrid colloidal nanodispersion as an elevated heat transport agent acquires immense interest among researchers rather than unitary nanoliquids. The aim of this investigation was to quantify the flow patterns and heat transfer behaviour of hybrid nanoliquids in presence of nonlinear solar radiation for various solar thermal apparatus. Alumina-copper nanoingredients with water as host fluid are considered. The leading PDEs of our system are turned into ODEs by using prevalent similarity transformation. After that those ODEs have been solved by RK-4-based shooting method. Subsequently, the influences of relevant parameters on the heat transfer of fluid have been talked over on behalf of graphical and tabular approach. Extracted results are verified with experimental plus simulated data. Results communicate that solar radiation fosters heat transport in suction. Hybrid solution exhibits impressive increment in heat transport for suction. Though injection reduces the effect, the decay rate is slower for hybrid nanocomposite. Flipping nature of velocity is perceived for Reynolds number, rotational parameter, and nanoparticle concentration except the variations of suction/injection parameter. We believe that this comprehensive investigation will have potential applications in solar thermal power fabrication, solar ponds, solar thermo electric cells, etc.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号