首页> 外文期刊>Advanced functional materials >Reversible Cation-Mediated Anionic Redox in Defect Spinel Structure for High Power Batteries
【24h】

Reversible Cation-Mediated Anionic Redox in Defect Spinel Structure for High Power Batteries

机译:Reversible Cation-Mediated Anionic Redox in Defect Spinel Structure for High Power Batteries

获取原文
获取原文并翻译 | 示例
           

摘要

With ever-increasing energy demand, more efforts are dedicated to designing innovative electrode materials providing higher storage capability and power output. As it has been demonstrated recently, the use of mixed cation-anion redox reactions opens up new possibilities for the significant rise of material's capacity and unusual electrochemical characteristics of lithium-ion battery electrodes. In this paper, a new type of fast cation-mediated anionic redox reaction in the 3D spinel structure is presented. Li0.98K0.01Mn1.86Ni0.11O4 shows 170% of stoichiometric spinel theoretical capacity without voltage hysteresis or significant capacity and voltage fading attributed to limitations of reversible anionic redox. The authors' sol-gel-derived defect spinel structure can deliver 250 mAh g(-1) at 1C and retain 64% of this capacity under a high 50C current rate. The observed electrochemical process shows the reversibility unseen before in mixed cation-anion redox cathode materials for Li-ion systems.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号