首页> 外文期刊>International journal of mechanics and materials in design >Fracture strength of Graphene at high temperatures: data driven investigations supported by MD and analytical approaches
【24h】

Fracture strength of Graphene at high temperatures: data driven investigations supported by MD and analytical approaches

机译:Fracture strength of Graphene at high temperatures: data driven investigations supported by MD and analytical approaches

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract The extraordinary opto-electronic and mechanical properties of Graphene makes it a popular material for several applications. However, defects like: cracks, and voids are unavoidable during its production, which can lead to poor properties. Furthermore, the fracture properties degrades at higher temperatures. In this study, the fracture strength of Graphene is investigated as a function of temperature, considering the influence of lattice orientation, initial crack size and its orientation. As a first step, an analytical model is developed to estimate the fracture strength of Graphene with respect to temperature, considering the above parameters. Later on, molecular dynamics simulations are performed with an included initial edge crack in ten different sizes and four orientations, at three particular lattice orientations, and operating at thirteen different temperatures. Finally, a deep machine learning model is developed to estimate the fracture strength of defective Graphene. Results from molecular dynamics simulations are used to train the developed deep machine learning model. Furthermore, the training is enhanced using transfer learning, where the weights and biases for the data set considering 0°documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$0^circ$$end{document} lattice orientation are adopted in training the networks for 13.9°documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$13.9^circ$$end{document} and 30°documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$30^circ$$end{document} lattice orientations. Results from the developed deep machine learning model are validated by comparing them with the results from the analytical and molecular dynamics models and a good agreement is observed. Thus, a deep machine learning model has been proposed here to estimate the fracture strength of defective Graphene. The developed model serves as a tool for quick estimation fracture strength of defective Graphene.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号