...
首页> 外文期刊>Environmental Science & Technology: ES&T >Anthraquinone-2-Sulfonate as a Microbial Photosensitizer andCapacitor Drives Solar-to-N2O Production with a Quantum Efficiencyof Almost Unity
【24h】

Anthraquinone-2-Sulfonate as a Microbial Photosensitizer andCapacitor Drives Solar-to-N2O Production with a Quantum Efficiencyof Almost Unity

机译:Anthraquinone-2-Sulfonate as a Microbial Photosensitizer andCapacitor Drives Solar-to-N2O Production with a Quantum Efficiencyof Almost Unity

获取原文
获取原文并翻译 | 示例
           

摘要

Semiartificial photosynthesis shows great potential in solar energy conversion and environmental application. However, the rate-limiting step of photoelectron transfer at the biomaterial interface results in an unsatisfactory quantum yield (QY, typically lower than 3%). Here, an anthraquinone molecule, which has dual roles of microbial photosensitizer and capacitor, was demonstrated to negotiate the interface photoelectron transfer via decoupling the photochemical reaction with a microbial dark reaction. In a model system, anthraquinone-2-sulfonate (AQS)-photosensitized Thiobacillus denitrificans, a maximum QY of solar-to-nitrous oxide (N2O) of 96.2% was achieved, which is the highest among the semiartificial photosynthesis systems. Moreover, the conversion of nitrate into N2O was almost 100%, indicating the excellent selectivity in nitrate reduction. The capacitive property of AQS resulted in 82-89% of photoelectrons released at dark and enhanced 5.6-9.4 times the conversion of solar-to-N2O. Kinetics investigation revealed a zero-order- and first-order- reaction kinetics of N2O production in the dark (reductive AQS-mediated electron transfer) and under light (direct photoelectron transfer), respectively. This work is the first study to demonstrate the role of AQS in photosensitizing a microorganism and provides a simple and highly selective approach to produce N2O from nitrate-polluted wastewater and a strategy for the efficient conversion of solar-to-chemical by a semiartificial photosynthesis system

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号