首页> 外文期刊>Advanced functional materials >Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease
【24h】

Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease

机译:Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease

获取原文
获取原文并翻译 | 示例
           

摘要

The survival and synaptic integration of transplanted dopaminergic (DA) progenitors are essential for ameliorating motor symptoms in Parkinson's disease (PD). Human pluripotent stem cell (hPSC)-derived DA progenitors are, however, exposed to numerous stressors prior to, and during, implantation that result in poor survival. Additionally, hPSC-derived grafts show inferior plasticity compared to fetal tissue grafts. These observations suggest that a more conducive host environment may improve graft outcomes. Here, tissue-specific support to DA progenitor grafts is provided with a fully characterized self-assembling peptide hydrogel. This biomimetic hydrogel matrix is programmed to support DA progenitors by i) including a laminin epitope within the matrix; and ii) shear encapsulating glial cell line-derived neurotrophic factor (GDNF) to ensure its sustained delivery. The biocompatible hydrogel biased a 51% increase in A9 neuron specification-a subpopulation of DA neurons critical for motor function. The sustained delivery of GDNF induced a 2.7-fold increase in DA neurons and enhanced graft plasticity, resulting in significant improvements in motor deficits at 6 months. These findings highlight the therapeutic benefit of stepwise customization of tissue-specific hydrogels to improve the physical and trophic support of human PSC-derived neural transplants, resulting in improved standardization, predictability and functional efficacy of grafts for PD.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号