首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Dimensionality Reduction with Sparse Locality for Principal Component Analysis
【24h】

Dimensionality Reduction with Sparse Locality for Principal Component Analysis

机译:Dimensionality Reduction with Sparse Locality for Principal Component Analysis

获取原文
获取原文并翻译 | 示例
           

摘要

Various dimensionality reduction (DR) schemes have been developed for projecting high-dimensional data into low-dimensional representation. The existing schemes usually preserve either only the global structure or local structure of the original data, but not both. To resolve this issue, a scheme called sparse locality for principal component analysis (SLPCA) is proposed. In order to effectively consider the trade-off between the complexity and efficiency, a robust L-2,L-p-norm-based principal component analysis (R2P-PCA) is introduced for global DR, while sparse representation-based locality preserving projection (SR-LPP) is used for local DR. Sparse representation is also employed to construct the weighted matrix of the samples. Being parameter-free, this allows the construction of an intrinsic graph more robust against the noise. In addition, simultaneous learning of projection matrix and sparse similarity matrix is possible. Experimental results demonstrate that the proposed scheme consistently outperforms the existing schemes in terms of clustering accuracy and data reconstruction error.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号