首页> 外文期刊>Composite structures >Micro-scale graded mechanical metamaterials exhibiting versatile Poisson's ratio
【24h】

Micro-scale graded mechanical metamaterials exhibiting versatile Poisson's ratio

机译:Micro-scale graded mechanical metamaterials exhibiting versatile Poisson's ratio

获取原文
获取原文并翻译 | 示例
           

摘要

? 2023 Elsevier LtdThe ability to control Poisson's ratio of functional materials has been one of the main objectives of researchers attempting to develop structures efficient from the perspective of protective, biomedical and soundproofing devices. This task becomes even more challenging at small scales, such as the microscale, where the possibility to control mechanical properties of functional materials is very significant, like in the case of flexible electronics. In this work, we propose novel microscopic 2D and 3D functionally-graded mechanical metamaterials capable of exhibiting a broad range of Poisson's ratio depending on their composition. More specifically, we show that upon adjusting the number of structural elements corresponding to one type of the substructure at the expense of another, it is possible to change the resultant Poisson's ratio of the entire system from highly positive to highly negative values as well as to achieve arbitrary intermediate values. Finally, in addition to static properties, we also analyze the dynamic properties of these structures. Namely, we show how the variation in the composition of the considered mechanical metamaterials affects the velocity of a wave propagating through the system. This, in turn, could be essential in the case of applications utilizing localized wave attenuation or sensors.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号