...
首页> 外文期刊>Building and environment >Considering transient UTCI and thermal discomfort footprint simultaneously to develop dynamic thermal comfort models for pedestrians in a hot-and-humid climate
【24h】

Considering transient UTCI and thermal discomfort footprint simultaneously to develop dynamic thermal comfort models for pedestrians in a hot-and-humid climate

机译:Considering transient UTCI and thermal discomfort footprint simultaneously to develop dynamic thermal comfort models for pedestrians in a hot-and-humid climate

获取原文
获取原文并翻译 | 示例
           

摘要

? 2022 Elsevier LtdA well-being and sustainable urban environment consist of a series of pedestrian walkways for either commuting, exercising, or leisure use. The environmental thermal condition, which affects a person's thermal comfort, of the linear walking paths will inherently influence people's usage probability. The outdoor thermal environment and the human physiological response are both important determinants of thermal comfort during the dynamic process of walking. The traditional assessment of thermal comfort is based on the heat balance of the human body with steady environmental conditions that are rarely true in the constantly changing outdoor environments due to the context of urban morphology. In this research, we propose a novel method by integrating the traditional static thermal comfort index with the dynamic thermal comfort footprint and taking the spatiotemporal variations of thermal comfort conditions during the walking activity into consideration to develop dynamic thermal comfort prediction models for pedestrians. On-site thermal walking experiments with both subjective thermal questionnaires and objective physical thermal condition measurements were conducted on a university campus in different seasons to help establish the models. The proposed models were afterward validated against the measured values and showed that they can predict the dynamic thermal comfort of the pedestrians with satisfactory accuracy. With the proposed model, one could assess the dynamic thermal comfort conditions of a particular walk path with the Universal Thermal Climate Index (UTCI) and help to seek strategies in designing a thermally acceptable pedestrian walkway.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号