首页> 外文期刊>Advanced energy materials >Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
【24h】

Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells

机译:Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells

获取原文
获取原文并翻译 | 示例
           

摘要

Organic-inorganic lead halide perovskite solar cells (PSCs) have demonstrated enormous potential as a new generation of solar-based renewable energy. Although their power conversion efficiency (PCE) has been boosted to a spectacular record value, the long-term stability of efficient PSCs is still the dominating concern that hinders their commercialization. Notably, interface engineering has been identified as a valid strategy with extraordinary achievements for enhancing both efficiency and stability of PSCs. Herein, the latest research advances of interface engineering for various interfaces are summarized, and the basic theory and multifaceted roles of interface engineering for optimizing device properties are analyzed. As a highlight, the authors provide their insights on the deposition strategy of interlayers, application of first-principle calculation, and challenges and solutions of interface engineering for PSCs with high efficiency and stability toward future commercialization.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号