首页> 外文期刊>Advanced energy materials >Strategic Approach to Diversify Design Options for Li-Ion Batteries by Utilizing Low-Ni Layered Cathode Materials
【24h】

Strategic Approach to Diversify Design Options for Li-Ion Batteries by Utilizing Low-Ni Layered Cathode Materials

机译:Strategic Approach to Diversify Design Options for Li-Ion Batteries by Utilizing Low-Ni Layered Cathode Materials

获取原文
获取原文并翻译 | 示例
           

摘要

Over the past few years, considerable attention has been paid to high-Ni layered cathode materials for high-energy Li-ion batteries (LIBs); however, these materials intrinsically have low thermal stability. Alternatively, the high-voltage operation of low-Ni materials may be one of the attractive ways to provide various options for designing advanced LIBs. Here, the structural, electrochemical, and thermal properties of LiNi0.5Co0.2Mn0.3O2 (NCM523) and LiNi0.80Co0.15Al0.05O2 (NCA) are investigated by setting up the same initial discharge capacity. In the high-voltage region, NCM523 exhibits less anisotropic lattice distortion and maintains wider Li-ion channels than NCA. After long-term cycling, reduced Ni ions are observed near the cracks, grain boundaries, or between the primary particles in both materials, however, the chemical states of the Ni ions in NCA are more heterogeneously distributed, and the particle pulverization and microcrack propagation are more prominent; the structural integrity and electrochemical properties of the material are degraded. Moreover, the cyclability and thermal stability of NCM523 are superior to those of NCA, despite the higher charge cut-off voltage of the former. Therefore, the utilization of low-Ni layered cathode materials operated at high voltage is a strategic approach to expand the design factors of advanced LIBs.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号