首页> 外文期刊>Reliability engineering & system safety >Intelligent fault diagnosis of rolling bearings with low-quality data: A feature significance and diversity learning method
【24h】

Intelligent fault diagnosis of rolling bearings with low-quality data: A feature significance and diversity learning method

机译:Intelligent fault diagnosis of rolling bearings with low-quality data: A feature significance and diversity learning method

获取原文
获取原文并翻译 | 示例
           

摘要

In real engineering applications, low-quality and insufficient vibration signals of rolling bearings, which are usually multiple faults with low signal-to-noise ratios (SNR), restricts the effective application of intelligent diagnosis methods based on deep learning. In this study, a new rolling bearing fault diagnostic method is proposed based on an improved deep fused convolutional neural network (DFCNN) combined with complementary ensemble empirical mode decomposition (CEEMD) and a short-time Fourier transform (STFT). First, the DFCNN is developed by introducing batch normalisation (BN) to overcome the gradient disappearance in convolutional neural networks (CNNs) and fuse multi-scale CNNs to improve feature diversity. Meanwhile, to enhance the quality of information, the original vibration signals are processed by CEEMD and STFT to obtain reconstructed denoising signals and time-frequency spectrograms, respectively. Then, these two types of data are input into a concatenation layer of DFCNN to extract the deep fault features, which are transformed by SoftMax to achieve bearing fault recognition. Finally, two bearing cases with data collected from the accelerated life degradation and different distributions are studied. The results reveal that the proposed method can fully mine fault features with low-quality data and realise efficient fault diagnosis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号