...
首页> 外文期刊>Environmental Science & Technology: ES&T >Biological Mitigation of Antibiotic Resistance Gene Dissemination by Antioxidant-Producing Microorganisms in Activated Sludge Systems
【24h】

Biological Mitigation of Antibiotic Resistance Gene Dissemination by Antioxidant-Producing Microorganisms in Activated Sludge Systems

机译:Biological Mitigation of Antibiotic Resistance Gene Dissemination by Antioxidant-Producing Microorganisms in Activated Sludge Systems

获取原文
获取原文并翻译 | 示例
           

摘要

Antibiotic resistance is the principal mechanism of an evergrowing bacterial threat. Antibiotic residues in the environment are a major contributor to the spread of antibiotic resistance genes (ARGs). Subinhibitory concentrations of antibiotics cause bacteria to produce reactive oxygen species (ROS), which can lead to mutagenesis and horizontal gene transfer (HGT) of ARGs; however, little is known about the mitigation of ARG dissemination through ROS removal by antioxidants. In this study, we examine how antioxidant-producing microorganisms inoculated in replicate activated sludge systems can biologically mitigate the dissemination of ARGs. Through quantitative polymerase chain reaction (qPCR), we showed that antioxidant-producing microorganisms could decrease the persistence of the RP4 plasmid and alleviate enrichment of ARGs (sul1) and class 1 integrons (intl1). Metagenomic sequencing identified the most diverse resistome and the most mutated Escherichia coli ARGs in the reactor that contained antibiotics but no antioxidant-producing microorganisms, suggesting that antioxidantproducing microorganisms mitigated ARG enrichment and mutation. Host classification revealed that antioxidant-producing microorganisms decreased the diversity of ARG hosts by shaping the microbial community through competition and functional pathway changes. Conjugative experiments demonstrated that conjugative transfer of ARGs could be mitigated by coculture with antioxidant-producing microorganisms. Overall, this is a novel study that shows how ARG enrichment and HGT can be mitigated through bioaugmentation with antioxidant-producing microorganisms.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号