首页> 外文期刊>journal of the korean ceramic society >Structural, microstructural, dielectric, transport, and optical properties of modified bismuth ferrite
【24h】

Structural, microstructural, dielectric, transport, and optical properties of modified bismuth ferrite

机译:Structural, microstructural, dielectric, transport, and optical properties of modified bismuth ferrite

获取原文
获取原文并翻译 | 示例
           

摘要

In this communication, the synthesis (solid-state reaction) and characterization (XRD, SEM, EDX, and IS) of the (1 - x)BiFeO3 - x(BiNaKTiMnO3), (x = 0.05 and 0.1) ceramics were reported. The structural analysis suggests a rhombohedral crystal symmetry (#R3c) with an average crystallite size of 39.6 nm and micro-lattice strain of 0.000401 in x = 0.05 sample, whereas average crystallite size of 46.6 nm and lattice strain of 0.00133 in x = 0.1 sample, respectively. The growth and distribution of the grains and the position of grain boundaries were studied from a scanning electron microscope (SEM). The purity and compositional analysis of the prepared samples were checked from an energy-dispersive X-ray analysis (EDX) image. The study of the Fourier-transform infrared spectroscopy (FTIR) spectrum suggests the presence of a stretching band of the constituent elements in the modified bismuth ferrite. The presence of the Maxwell-Wanger type of dispersion was confirmed by a dielectric study. The investigation of impedance as a function of temperature and frequency reveals the existence of a negative temperature coefficient of resistance (NTCR). A non-Debye kind of relaxation mechanism is revealed by electric modulus analysis; however, a thermally induced relaxation process is confirmed by an ac conductivity study. The semi-circular arcs in the Nyquist and Cole-Cole plots indicate that the sample is semiconducting. BNKTM 5% has an energy bandgap of 2.9 eV, while BNKTM 10% has an energy bandgap of 2.7 eV, according to UV-visible spectra. The field-dependent hysteresis loop is analogous to the onset of ferroelectricity.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号