...
首页> 外文期刊>Antimicrobial agents and chemotherapy. >Variability of Beta-Lactam Broth Microdilution for Pseudomonas aeruginosa
【24h】

Variability of Beta-Lactam Broth Microdilution for Pseudomonas aeruginosa

机译:Variability of Beta-Lactam Broth Microdilution for Pseudomonas aeruginosa

获取原文
获取原文并翻译 | 示例
           

摘要

Antimicrobial susceptibility testing for Pseudomonas aeruginosa is critical to determine suitable treatment options. Commercial susceptibility tests are typically calibrated against the reference method, broth microdilution (BMD). Imprecision of MICs obtained by BMD for the same isolate on repeat testing is known to exist. Factors that impact the extent of variability include concentration of the inoculum, operator effects, contents of the media, inherent strain properties, and the testing process or materials. We evaluated the variability of BMD for anti-pseudomonal beta-lactams (aztreonam, cefepime, ceftazidime, meropenem, piperacillintazobactam, ceftazidime-avibactam, and ceftolozane-tazobactam) tested against a collection of P. aeruginosa isolates. Multiple replicate BMD tests were performed, and MICs were compared to assess reproducibility, including the impact of the inoculum and operator. Overall, essential agreement (EA) was >= 90% for all beta-lactams tested. Absolute agreement (AA) was as low as 70% for some beta-lactams. Variability from the inoculum and operators impacted the reproducibility of MICs. Piperacillin-tazobactam exhibited the highest degree of variability with 74% AA and 94% EA. The implications of MIC variability are extensive, as the MIC is essential for multiple facets of microbiology, such as the development of new compounds and susceptibility tests, dose optimization, and pharmacokinetic/pharmacodynamic (PK/PD) targets for individual patients.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号