首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Research on the Mechanical Characteristics of Cyclic Loading and Unloading of Rock Based on Infrared Thermal Image Analysis
【24h】

Research on the Mechanical Characteristics of Cyclic Loading and Unloading of Rock Based on Infrared Thermal Image Analysis

机译:Research on the Mechanical Characteristics of Cyclic Loading and Unloading of Rock Based on Infrared Thermal Image Analysis

获取原文
获取原文并翻译 | 示例
           

摘要

In the operations of underground rock engineering, such as mining, the formation of goafs is often accompanied by unloading and energy effects. In this study, a cyclic loading and unloading stress test is carried out to analyze the strength characteristics of the loaded samples under different loading and unloading ranges as well as different numbers of cycles. The rock force is accompanied by substantial energy changes. To better fit the energy analysis under cyclic loading and unloading conditions, thermal infrared radiation characteristic analysis is performed during rock loading and unloading. An infrared radiation camera is adopted to detect the infrared characteristics of the rock force process after cyclic loading and unloading. Multiangle detection is implemented on the temperature, temperature field, and frequency histogram. The analysis shows that cyclic loading and unloading first strengthen and then weaken the rock. Moreover, the failure caused by the local stress concentration leads to a sharp increase in the temperature. There are significant temperature fluctuations before and after failure, and the temperature field after failure can be divided into three zones, namely, the normal temperature zone, heating zone, and mutational temperature zone, to comprehensively reflect that rock compression failure which is accompanied by the process of energy accumulation and release. On the basis of infrared energy analysis, the index of the energy release rate is introduced, and the loading and unloading analysis model is constructed. The research results reveal that rock failure is accompanied by the process of energy accumulation and release, which provides evidence for the analysis of the spatial stability of the rock mass under cyclic loading and unloading conditions and engineering excavation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号