首页> 外文期刊>Marine Biology: International Journal on Life in Oceans and Coastal Waters >Local-scale thermal history influences metabolic response of marine invertebrates to warming
【24h】

Local-scale thermal history influences metabolic response of marine invertebrates to warming

机译:Local-scale thermal history influences metabolic response of marine invertebrates to warming

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract As climate change continues, anticipating species’ responses to rising temperatures requires an understanding of the drivers of thermal sensitivity, which itself may vary over space and time. We measured metabolic rates of three representative marine invertebrate species (hermit crabs Pagurus hirsutiusculus, periwinkle snails Littorina sitkana, and mussels Mytilus trossulus) and evaluated the relationship between thermal sensitivity (Q10) and thermal history. We tested the hypothesis that thermal history drives thermal sensitivity and quantified how this relationship differs over time (short-term to seasonal time scales) and between species. Organisms were collected from tide pools in Sitka, Alaska where we also recorded temperatures to characterize thermal history prior to metabolic rate assays. Using respirometry, we estimated mass-specific oxygen consumption (MO2) at ambient and increased temperatures for one individual per species per tide pool across three seasons. We evaluated relationships between thermal sensitivity and pool temperatures for time periods ranging from 1?day to 1?month prior to collection. For all species, thermal sensitivity was related to thermal history for the shorter time periods (1?day to 1?week). However, the direction of the relationships and most important thermal parameters (i.e., maximum, mean, or range) differed between species and seasons. We found that on average, P. hirsutiusculus and L. sitkana were more thermally sensitive than M. trossulus. These findings show that variability in thermal history over small spatial scales influences individuals’ metabolic response to warming and may be indicative of these species’ ability to acclimate to future climate change.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号