...
首页> 外文期刊>Journal of algebra and its applications >Ideal structure of rings of analytic functions with non-Archimedean metrics
【24h】

Ideal structure of rings of analytic functions with non-Archimedean metrics

机译:Ideal structure of rings of analytic functions with non-Archimedean metrics

获取原文
获取原文并翻译 | 示例
           

摘要

The work of Helmer [Divisibility properties of integral functions, Duke Math. J. 6(2) (1940) 345–356] applied algebraic methods to the field of complex analysis when he proved the ring of entire functions on the complex plane is a Bezout domain (i.e. all finitely generated ideals are principal). This inspired the work of Henriksen [On the ideal structure of the ring of entire functions, Pacific J. Math. 2(2) (1952) 179–184. On the prime ideals of the ring of entire functions, Pacific J. Math. 3(4) (1953) 711–720] who proved a correspondence between the maximal ideals within the ring of entire functions and ultrafilters on sets of zeroes as well as a correspondence between the prime ideals and growth rates on the multiplicities of zeroes. We prove analogous results on rings of analytic functions in the non-Archimedean context: all finitely generated ideals in the ring of analytic functions on an annulus of a characteristic zero non-Archimedean field are two-generated but not guaranteed to be principal. We also prove the maximal and prime ideal structure in the non-Archimedean context is similar to that of the ordinary complex numbers; however, the methodology has to be significantly altered to account for the failure of Weierstrass factorization on balls of finite radius in fields which are not spherically complete, which was proven by Lazard [Les zeros d’une function analytique d’une variable sur un corps value complet, Publ. Math. l’IHES 14(1) (1942) 47–75].

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号