...
首页> 外文期刊>Journal of physical oceanography >Near-Inertial Surface Currents around Islands
【24h】

Near-Inertial Surface Currents around Islands

机译:Near-Inertial Surface Currents around Islands

获取原文
获取原文并翻译 | 示例
           

摘要

Motivated by observations of enhanced near-inertial currents at the island chain of Palau, the modification of wind-generated near-inertial oscillations (NIOs) by the presence of an island is examined using the analytic solutions of Longuet-Higgins and a linear, inviscid, 1.5-layer reduced-gravity model. The analytic solution for oscillations at the inertial frequency f provides insights into flow adjustment near the island but excludes wave dynamics. To account for wave motion, the numerical model initially is forced by a large-scale wind field rotating at f, where the forcing is increased then decreased to zero. Numerical simulations are carried out over a range of island radii and the ocean response detailed. Near the island, wind energy in the frequency band near f can excite subinertial island-trapped waves and superinertial Poincare waves. In the small-island limit, both the Poincare waves and the island-trapped waves are very near f, and their sum resembles the Longuet-Higgins analytic solution but with increased amplitude near the island. The flow field can be viewed as primarily a far-field NIO locally deflected by the island plus an island-trapped contribution, leading to enhanced near-inertial currents near the island, on the scale of the island radius. As the island size is increased, the island-trapped wave frequency deviates further from f and its amplitude depends strongly on the frequency bandwidth and wavenumber structure of the wind forcing. In the large-island limit, the island-trapped wave resembles a Kelvin wave, and the sum of incident and reflected Poincare waves suppresses the near-inertial current amplitude near the island. Significance StatementStrong, impulsive winds over the ocean excite currents that rotate in the opposite direction to Earth's rotation. This work examines how these wind-generated currents, known as near-inertial oscillations (NIOs), are modified by the presence of an island. Around small islands, the primary response is locally enhanced near-inertial currents. Alternatively, around large islands, near-inertial currents are weaker. Understanding how these currents behave should provide insight into the physical processes that drive current variability near islands and spur local mixing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号