首页> 外文期刊>Statistics and computing >Convergence rate bounds for iterative random functions using one-shot coupling
【24h】

Convergence rate bounds for iterative random functions using one-shot coupling

机译:Convergence rate bounds for iterative random functions using one-shot coupling

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract One-shot coupling is a method of bounding the convergence rate between two copies of a Markov chain in total variation distance, which was first introduced in Roberts and Rosenthal (Process Appl 99:195–208, 2002) and generalized in Madras and Sezer (Bernoulli 16:882–908, 2010). The method is divided into two parts: the contraction phase, when the chains converge in expected distance and the coalescing phase, which occurs at the last iteration, when there is an attempt to couple. One-shot coupling does not require the use of any exogenous variables like a drift function or a minorization constant. In this paper, we summarize the one-shot coupling method into the One-Shot Coupling Theorem. We then apply the theorem to two families of Markov chains: the random functional autoregressive process and the autoregressive conditional heteroscedastic process. We provide multiple examples of how the theorem can be used on various models including ones in high dimensions. These examples illustrate how the theorem’s conditions can be verified in a straightforward way. The one-shot coupling method appears to generate tight geometric convergence rate bounds.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号