...
首页> 外文期刊>Journal of physical oceanography >The Most Sensitive Initial Error of Sea Surface Height Anomaly Forecasts and Its Implication for Target Observations of Mesoscale Eddies
【24h】

The Most Sensitive Initial Error of Sea Surface Height Anomaly Forecasts and Its Implication for Target Observations of Mesoscale Eddies

机译:The Most Sensitive Initial Error of Sea Surface Height Anomaly Forecasts and Its Implication for Target Observations of Mesoscale Eddies

获取原文
获取原文并翻译 | 示例
           

摘要

We used the conditional nonlinear optimal perturbation (CNOP) approach to investigate the most sensitive initial error of sea surface height anomaly (SSHA) forecasts by using a two-layer quasigeostrophic model and revealed the importance of mesoscale eddies in initialization of the SSHA forecasts. Then, the CNOP-type initial errors for individual mesoscale eddies were calculated, revealing that the errors tend to occur in locations where the eddies present a clear high- to low-velocity gradient along the eddy rotation and the errors often have a shear SSHA structure present. Physically, we interpreted the rationality of the particular location and shear structure of the CNOP-type errors by barotropic instability from the perspective of the Lagrange expression of fluid motions. Numerically, we examined the sensitivity of the CNOP-type errors by using observing system simulation experiments (OSSEs). We concluded that if additional observations are preferentially implemented in the location where CNOP-type errors occur, especially with a particular array indicated by their shear structure, the forecast ability of the SSHA can be significantly improved. These results provide scientific guidance for the target observation of mesoscale eddies and therefore are very instructive for improving ocean state SSHA forecasts.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号