首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Intelligent Extremum Surrogate Modeling Framework for Dynamic Probabilistic Analysis of Complex Mechanism
【24h】

Intelligent Extremum Surrogate Modeling Framework for Dynamic Probabilistic Analysis of Complex Mechanism

机译:Intelligent Extremum Surrogate Modeling Framework for Dynamic Probabilistic Analysis of Complex Mechanism

获取原文
获取原文并翻译 | 示例
           

摘要

The reliability analysis of complex mechanisms involves time-varying, high-nonlinearity, and multiparameters. The traditional way is to employ Monte Carlo (MC) simulation to achieve the reliability level, but this method consumes too much computing resources and is even computationally intractable. To improve the efficiency and accuracy of dynamic probabilistic analysis of complex mechanisms, an intelligent extremum surrogate modeling framework (IESMF, short for) is proposed based on extremum response surface method (ERSM), combined with artificial neural network (ANN) method and an improved optimize particle swarm optimization (PSO) method. Hereinto, the ERSM is used to simplify the dynamic process of output response to the extremum value of transient analysis; ANN is applied to establish a mathematical model between input variables and response, and the improved PSO method is utilized in search of initial weights and thresholds of the model. The effectiveness of the IESMF is demonstrated to perform the Rack-and-pinion steering mechanism (RPSM) reliability analysis. The results show that when the allowable value of gear root stress is equal to 850 MPa, the RPSM has a reliability degree of 0.9971. Through the validation process, it is illustrated that IESMF is accurate and efficient in dynamic probabilistic analysis of complex mechanisms, and its comprehensive performance is better than the MC method and ERSM. The research effort offers new ideas for the reliability estimation of a complex mechanism, thus enriching the method and theory of mechanical reliability design.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号