首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >An Optimized Neural Network Classification Method Based on Kernel Holistic Learning and Division
【24h】

An Optimized Neural Network Classification Method Based on Kernel Holistic Learning and Division

机译:An Optimized Neural Network Classification Method Based on Kernel Holistic Learning and Division

获取原文
获取原文并翻译 | 示例
           

摘要

An optimized neural network classification method based on kernel holistic learning and division (KHLD) is presented. The proposed method is based on the learned radial basis function (RBF) kernel as the research object. The kernel proposed here can be considered a subspace region consisting of the same pattern category in the training sample space. By extending the region of the sample space of the original instances, relevant information between instances can be obtained from the subspace, and the classifier's boundary can be far from the original instances; thus, the robustness and generalization performance of the classifier are enhanced. In concrete implementation, a new pattern vector is generated within each RBF kernel according to the instance optimization and screening method to characterize KHLD. Experiments on artificial datasets and several UCI benchmark datasets show the effectiveness of our method.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号