首页> 外文期刊>DVS-Berichte >Investigation on laser cladding processes using high-resolution in-line atomic emission spectroscopy
【24h】

Investigation on laser cladding processes using high-resolution in-line atomic emission spectroscopy

机译:Investigation on laser cladding processes using high-resolution in-line atomic emission spectroscopy

获取原文
获取原文并翻译 | 示例
           

摘要

Process monitoring and control methods during direct metal deposition (DMD) are used to ensure a consistent manufacturing quality of the process. In the optical regime, naturally occurring process emission provides therefore selective and specific element lines, which can be obtained by optical spectrometers. However, DMD processes are in the heat conduction regime and superimposed broad spectral emissions dominate the wavelength specific signals. The aim of this work is to investigate the occurrence of different elemental lines in DMD processes as well as deposition track cross-sectional dimensions. Therefore, experiments were simultaneously conducted by using a high-resolution spectrometer (resolution = approx. 47 pm FWHM at 522 nm and 55 pm FWHM at 407.5 nm) and a medium resolution spectrometer (resolution = 0.73 nm FWHM), which were coupled by a bifurcated optical fibre. A parameter study of 27 single track DMD experiments using Co-Cr-based (MetcoClad21) powder on low-alloyed tool steel C45W (1.1730) substrate material, varying laser power, scan velocity and powder feed rate was conducted. Series of spectra were obtained for all sets of parameters with a scan rate of 100 Hz. The individual wavelength spectrum was analysed and classified by an algorithm into two types. Type-A spectra, with specific element emission lines and Type-B spectra, without significant emission lines with mostly predominant thermal emission radiation. Each deposition track was coupled to cross-sectional dimensions, including height, welding depth and melted areas. In addition, certain elemental lines contained in Type-A spectra were verified by using data from the NIST atomic spectra database. The investigation indicates that the relative number of Type-A spectra with respect to the total quantity of spectra, correlates significant to the process parameters. All detected and identified element lines occurred to be non-ionised elements, especially Cr I, Fe I and Mn I lines were frequently observed.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号