首页> 外文期刊>Nanotechnology >Molecular dynamics simulation of nanofilament breakage in neuromorphic nanoparticle networks
【24h】

Molecular dynamics simulation of nanofilament breakage in neuromorphic nanoparticle networks

机译:Molecular dynamics simulation of nanofilament breakage in neuromorphic nanoparticle networks

获取原文
获取原文并翻译 | 示例
           

摘要

Neuromorphic computing systems may be the future of computing and cluster-based networks are a promising architecture for the realization of these systems. The creation and dissolution of synapses between the clusters are of great importance for their function. In this work, we model the thermal breakage of a gold nanofilament located between two gold nanoparticles via molecular dynamics simulations to study on the mechanisms of neuromorphic nanoparticle-based devices. We employ simulations of Au nanowires of different lengths (20-80 angstrom), widths (4-8 angstrom) and shapes connecting two Au-1415 nanoparticles (NPs) and monitor the evolution of the system via a detailed structural identification analysis. We found that atoms of the nanofilament gradually aggregate towards the clusters, causing the middle of wire to gradually thin and then break. Most of the system remains crystalline during this process but the center is molten. The terminal NPs increase the melting point of the NWs by fixing the middle wire and act as recrystallization areas. We report a strong dependence on the width of the NWs, but also their length and structure. These results may serve as guidelines for the realization of cluster-based neuromorphic computing systems.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号