...
首页> 外文期刊>Journal of manufacturing processes >Temperature regulation for thermoplastic micro-forming of bulk metallic glass: Robust control design using buck converter
【24h】

Temperature regulation for thermoplastic micro-forming of bulk metallic glass: Robust control design using buck converter

机译:Temperature regulation for thermoplastic micro-forming of bulk metallic glass: Robust control design using buck converter

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This article presents the design, identification, simulation, and control of a buck converter implemented for bulk metallic glass thermoplastic micro-forming. In manufacturing of multi-faceted bulk metallic glass knife edge, the temperature of the micro-forming sample is critical to the thermoplastic deformation, which determines the quality of the blade edge shape. We propose a nested inner-current outer-temperature control system for high-fidelity temperature regulation. The inner-current control loop is implemented on a modified buck converter, which allows high-power rectified AC input and outputs current that can be regulated with a precision of 2 % over a bandwidth of 5 Hz. We use switch-averaged electrical model together with feedback linearization to address complex nonlinear dynamics that describe a buck converter, and to enable it using linear control design methods. The outer-temperature control design ensures temperature regulation of a heater by prescribing real-time reference power that the current-control loop should provide. The challenge of nonlinear relationship between the required reference power and the regulated current is addressed by exploiting the high-bandwidth of the inner-current loop. The control objectives of regulation performance and robustness to modelling uncertainties are posed and solved in an optimal control (H-infinity) framework. Experimental results demonstrate that our control design achieved the required temperature regulation at 673 K within 0.03 K. An improvement of over 5000 % is demonstrated when compared with previously implemented control designs. Moreover, the buck converter-based system enables regulation accuracies that were not possible with other popular existing methods such as TRIAC and traditional relay switches.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号