首页> 外文期刊>ISIJ International >Recent Studies of Hydrogen-related Defects in Iron-based Materials
【24h】

Recent Studies of Hydrogen-related Defects in Iron-based Materials

机译:Recent Studies of Hydrogen-related Defects in Iron-based Materials

获取原文
获取原文并翻译 | 示例
           

摘要

The interactions between hydrogen, dislocations and vacancies that lead to the hydrogen embrittlement of iron-based materials have remained largely unknown with major impediments for the development of the infrastructure for hydrogen transport and storage. Recent studies of the hydrogen-induced lattice defects formed in pure iron and common austenitic stainless steels by positron annihilation lifetime spectroscopy have provided a breakthrough in understanding the controlling factors of the hydrogen embrittlement process. In this review, the main results of those studies are summarized and discussed together with current knowledge of hydrogen-related defects. The formation of vacancy-hydrogen complexes coupled to a plastic strain localization which is large enough to lead to hydrogen-enhanced vacancy clustering during the plastic deformation appears to be the likely factor that triggers the hydrogen embrittlement of bcc(alpha-) and fcc(gamma)-iron.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号