首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Bayesian Modeling for Epistasis Analysis Using Data-Driven Reversible Jump
【24h】

Bayesian Modeling for Epistasis Analysis Using Data-Driven Reversible Jump

机译:Bayesian Modeling for Epistasis Analysis Using Data-Driven Reversible Jump

获取原文
获取原文并翻译 | 示例
           

摘要

We propose a procedure for modeling a phenotype using QTLs which estimate the additive and dominance effects of genotypes and epistasis. The estimation of the model is implemented through a Bayesian approach which uses the data-driven reversible jump (DDRJ) for multiple QTL mapping and model selection. We compare the DDRJ’s performance with the usual reversible jump (RJ), QTLBim, multiple interval mapping (MIM) and LASSO using real and simulated data sets. The DDRJ outperforms the available methods to estimate the number of QTLs in epistatic models and it identifies their locations in the genome, without increasing the number of false-positive QTLs in the considered data. Since QTL mapping is a regression model involving complex non-observable variables and their interactions, the model selection procedure proposed here is also useful in other areas of research. The application for identifying main and epistatic relevant QTLs to systolic blood pressure after salt intervention is our main motivation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号