...
首页> 外文期刊>Cell and Tissue Research >The role of copper chromite nanoparticles on physical and bio properties of scaffolds based on poly(glycerol-azelaic acid) for application in tissue engineering fields
【24h】

The role of copper chromite nanoparticles on physical and bio properties of scaffolds based on poly(glycerol-azelaic acid) for application in tissue engineering fields

机译:The role of copper chromite nanoparticles on physical and bio properties of scaffolds based on poly(glycerol-azelaic acid) for application in tissue engineering fields

获取原文
获取原文并翻译 | 示例
           

摘要

Tissue engineering combines suitable cells, engineering methods, and proper biochemical factors to develop functional and biological tissues and repair damaged tissues. In this study, we focused on synthesizing and characterizing a nanocomposite scaffold based on glycerol and azelaic acid (Gl-Az) combined with copper chromite (CuCr2O4) nanoparticles in order to increase the osteogenic differentiation efficiency of human adipose-derived stem cells (hADSCs) on fabricated scaffolds. The degradability and hydrophobicity properties as well as mechanical and thermal behaviors of nanocomposite scaffolds were investigated. Next, the cell toxicity of glycerol, azelaic acid and CuCr2O4 nanoparticles was studied by MTT assay test and acridine orange staining. Finally, the osteogenic differentiation of hADSCs on Gl-Az-CuCr2O4 scaffolds was examined using alkaline phosphatase activity (ALP) and calcium content. The obtained results demonstrated that Gl-Az-1%CuCr2O4 not only showed appropriate mechanical strength, biocompatibility and degradability but also influenced the capability of hADSCs to differentiate into osteogenic lineages. The hADSCs culture in Gl-Az-1%CuCr2O4 showed a significant increase in ALP activity levels and calcium biomineralization after 14 days of osteogenic differentiation. In conclusion, the Gl-Az-1%CuCr2O4 nanocomposite could be used as a biocompatible and degradable scaffold to induce the bone differentiation of hADSCs and it could be a promising scaffold in bone regenerative medicine.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号