...
首页> 外文期刊>Environmental Science & Technology: ES&T >Mechanistic Insight into Catalytic Combustion of Ethyl Acetate on Modified CeO2 Nanobelts: Hydrolysis-Oxidation Process and Shielding Effect of Acetates/Alcoholates
【24h】

Mechanistic Insight into Catalytic Combustion of Ethyl Acetate on Modified CeO2 Nanobelts: Hydrolysis-Oxidation Process and Shielding Effect of Acetates/Alcoholates

机译:Mechanistic Insight into Catalytic Combustion of Ethyl Acetate on Modified CeO2 Nanobelts: Hydrolysis-Oxidation Process and Shielding Effect of Acetates/Alcoholates

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, based on the comparison of two counterparts [Mn- and Cr-modified CeO2 nanobelts (NBs)] with the opposite effects, some novel mechanistic insights into the ethyl acetate (EA) catalytic combustion over CeO2-based catalysts were proposed. The results demonstrated that EA catalytic combustion consisted of three primary processes: EA hydrolysis (C-O bond breakage), the oxidation of intermediate products, and the removal of surface acetates/alcoholates. Rapid EA hydrolysis typically occurs on surface acid/base sites or hydroxyl groups, and the removal of surface acetates/alcoholates resulting from EA hydrolysis is considered the rate-determining step. The deposited acetates/alcoholates like a shield covered the active sites (such as surface oxygen vacancies), and the enhanced mobility of the surface lattice oxygen as an oxidizing agent played a vital role in breaking through the shield and promoting the further hydrolysis-oxidation process. The Cr modification impeded the release of surface-activated lattice oxygen from the CeO2 NBs and induced the accumulation of acetates/alcoholates at a higher temperature due to the increased surface acidity/basicity. Conversely, the Mn-substituted CeO2 NBs with the higher lattice oxygen mobility effectively accelerated the in situ decomposition of acetates/ alcoholates and facilitated the re-exposure of surface active sites. This study may contribute to a further mechanistic understanding into the catalytic oxidation of esters or other oxygenated volatile organic compounds over CeO2-based catalysts.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号