...
首页> 外文期刊>Environmental Science & Technology: ES&T >Heterogeneous Sorption of Radionuclides Predicted by Crystal Surface Nanoroughness
【24h】

Heterogeneous Sorption of Radionuclides Predicted by Crystal Surface Nanoroughness

机译:Heterogeneous Sorption of Radionuclides Predicted by Crystal Surface Nanoroughness

获取原文
获取原文并翻译 | 示例
           

摘要

Reactive transport modeling (RTM) is an essential tool for the prediction of contaminants' behavior in the bio- and geosphere. However, RTM of sorption reactions is constrained by the reactive surface site assessment. The reactive site density variability of the crystal surface nanotopography provides an "energetic landscape", responsible for heterogeneous sorption efficiency, not covered in current RTM approaches. Here, we study the spatially heterogeneous sorption behavior of Eu(III), as an analogue to trivalent actinides, on a polycrystalline nanotopographic calcite surface and quantify the sorption efficiency as a function of surface nanoroughness. Based on experimental data from micro-focus time-resolved laser-induced luminescence spectroscopy (mu TRLFS), vertical scanning interferometry, and electron backscattering diffraction (EBSD), we parameterize a surface complexation model (SCM) using surface nanotopography data. The validation of the quantitatively predicted spatial sorption heterogeneity suggests that retention reactions can be considerably influenced by nanotopographic surface features. Our study presents a way to implement heterogeneous surface reactivity into a SCM for enhanced prediction of radionuclide retention.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号