...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Simulating hyperelasticity and fractional viscoelasticity in the human heart
【24h】

Simulating hyperelasticity and fractional viscoelasticity in the human heart

机译:Simulating hyperelasticity and fractional viscoelasticity in the human heart

获取原文
获取原文并翻译 | 示例
           

摘要

Biomechanics plays an important role in the diagnosis and treatment of pathological conditions of the heart. Computational models are paving the way for personalized therapeutic treatment but they rely on accurate constitutive equations for predicting their biomechanical behavior. Even so, viscoelasticity remains under-explored in computational modeling despite experimental observations. To facilitate the viscoelastic modeling of cardiovascular soft tissues, we previously developed a fractional viscoelastic modeling approach, which extends existing hyperelastic models. This has comparable computational costs to the conventional hyperelastic model and only requires two additional material parameters for the viscoelastic response. This approach was demonstrated to be able to accurately capture the viscoelastic response of the human myocardium. However, the numerical properties of this fractional viscoelastic approach have not yet been examined. In this work, we present its implementation in Finite Element Analysis, examine its numerical properties in uniaxial extension and 2D inflation test examples, and examine its physiological implication in a computational model of an idealized left ventricle in a fully idealized circulatory system. Optimal convergence properties were observed and the importance of viscoelasticity during passive filling, ventricular motion, and regional fiber strain and stresses were explained.(c) 2023 Elsevier B.V. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号