首页> 外文期刊>Nanotechnology >Steep-slope transistors enabled with 2D quantum coupling stacks
【24h】

Steep-slope transistors enabled with 2D quantum coupling stacks

机译:Steep-slope transistors enabled with 2D quantum coupling stacks

获取原文
获取原文并翻译 | 示例
           

摘要

As down scaling of transistors continues, there is a growing interest in developing steep-slope transistors with reduced subthreshold slope (SS) below the Boltzmann limit. In this work, we successfully fabricated steep-slope MoS2 transistors by incorporating a graphene layer, inserted in the gate stack. For our comprehensive study, we have applied density functional theory to simulate and calculate the change of SS effected by different 2D quantum materials, including graphene, germanene and 2D topological insulators, inserted within the gate dielectric. This theoretical study showed that graphene/MoS2 devices had steep SS (27.2 mV/decade), validating our experimental approach (49.2 mV/decade). Furthermore, the simulations demonstrated very steep SS (8.6 mV/decade) in WTe2/MoS2 devices. We conclude that appropriate combination of various 2D quantum materials for the gate-channel stacks, leads to steep SS and is an effective method to extend the scaling of transistors with exceptional performance.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号